KIT | KIT-Bibliothek | Impressum | Datenschutz
Open Access Logo
§
Volltext
DOI: 10.5445/IR/1000087180
Veröffentlicht am 06.11.2018

Uniformly Accurate Methods for Klein-Gordon type Equations

Baumstark, Simon

Abstract (englisch):
The main contribution of this thesis is the development of a novel class of uniformly accurate methods for Klein-Gordon type equations.
Klein-Gordon type equations in the non-relativistic limit regime, i.e., $c\gg 1$, are numerically very challenging to treat, since the solutions are highly oscillatory in time. Standard Gautschi-type methods suffer from severe time step restrictions as they require a CFL-condition $c^2\tau<1$ with time step size $\tau$ to resolve the oscillations. Within this thesis we overcome this difficulty by introducing limit integrators, which allows us to reduce the highly oscillatory problem to the integration of a non-oscillatory limit system. This procedure allows error bounds of order $\mathcal{O}(c^{-2}+\tau^2)$ without any step size restrictions. Thus, these integrators are very efficient in the regime $c\gg 1$. However, limit integrators fail for small values of $c$.
In order to derive numerical schemes that work well for small as well as for large $c$, we use the ansatz of "twisted variables", which allows us to develop uniformly accurate methods with respect to $c$. In particular, we ... mehr


Zugehörige Institution(en) am KIT Institut für Angewandte und Numerische Mathematik (IANM)
Publikationstyp Hochschulschrift
Jahr 2018
Sprache Englisch
Identifikator URN: urn:nbn:de:swb:90-871804
KITopen ID: 1000087180
Verlag Karlsruhe
Umfang V, 146 S.
Abschlussart Dissertation
Fakultät Fakultät für Mathematik (MATH)
Institut Institut für Angewandte und Numerische Mathematik (IANM)
Prüfungsdatum 12.07.2018
Referent/Betreuer JProf. K. Schratz
Projektinformation SFB 1173/1 (DFG, DFG KOORD, SFB 1173/1 2015)
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft KITopen Landing Page