KIT | KIT-Bibliothek | Impressum | Datenschutz
Open Access Logo
DOI: 10.5445/IR/1000088929
Veröffentlicht am 21.12.2018

Energy bounds for biharmonic wave maps in low dimensions

Schmid, Tobias

For compact, isometrically embedded Riemannian manifolds $N\hookrightarrow \mathbb{R}^L$, we introduce a fourth-order version of the wave map equation. By energy estimates, we prove an priori estimate for smooth local solutions in the energy subcritical dimension $n = 1, 2$. The estimate excludes blow-up of a Sobolev norm in finite existence times. In particular, combining this with an upcoming work of local well-posedness of the Cauchy problem, it follows that for smooth initial data with compact support, here exists a (smooth) unique global solution in dimension $n = 1, 2$. We also give a proof of the uniqueness of solutions that are bounded in these Sobolev norms.

Zugehörige Institution(en) am KIT Institut für Analysis (IANA)
Sonderforschungsbereich 1173 (SFB 1173)
Publikationstyp Forschungsbericht
Jahr 2018
Sprache Englisch
Identifikator ISSN: 2365-662X
URN: urn:nbn:de:swb:90-889291
KITopen-ID: 1000088929
Verlag KIT, Karlsruhe
Umfang 12 S.
Serie CRC 1173 ; 2018/51
Projektinformation SFB 1173/1 (DFG, DFG KOORD, SFB 1173/1 2015)
Schlagworte biharmonic, fourth-order wave equation, energy estimates, global solutions
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft KITopen Landing Page