KIT | KIT-Bibliothek | Impressum | Datenschutz

Heterogeneous multiscale method for Maxwell’s equations

Hochbruck, Marlis; Maier, Bernhard; Stohrer, Christian

Abstract:

We present a Finite Element Heterogeneous Multiscale Method (FE-HMM) for time-dependent Maxwell’s equations in first-order formulation in highly oscillatory materials using Nédélec’s edge elements. Based on a uniform approach for the error analysis of non-conforming space discretizations, we prove an error bound for the semidiscrete scheme. We further present error bounds for the fully discrete scheme, where we consider time discretization using algebraically stable Runge-Kutta methods, the Crank-Nicolson method and the leapfrog method. These error bounds are confirmed by numerical experiments.


Volltext §
DOI: 10.5445/IR/1000088934
Veröffentlicht am 21.12.2018
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Angewandte und Numerische Mathematik (IANM)
Sonderforschungsbereich 1173 (SFB 1173)
Publikationstyp Forschungsbericht/Preprint
Publikationsjahr 2018
Sprache Englisch
Identifikator ISSN: 2365-662X
urn:nbn:de:swb:90-889344
KITopen-ID: 1000088934
Verlag Karlsruher Institut für Technologie (KIT)
Umfang 25 S.
Serie CRC 1173 ; 2018/54
Projektinformation SFB 1173/1 (DFG, DFG KOORD, SFB 1173/1 2015)
Schlagwörter heterogeneous multiscale method, first order time-dependent Maxwell’s equations, fully discrete error analysis
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page