KIT | KIT-Bibliothek | Impressum | Datenschutz
Open Access Logo
§
Volltext
DOI: 10.5445/IR/1000089304
Veröffentlicht am 11.01.2019

Biharmonic wave maps: local wellposedness in high regularity

Herr, Sebastian; Lamm, Tobias; Schmid, Tobias; Schnaubelt, Roland

Abstract:
We show a local wellposedness result for biharmonic wave maps with initial data of sufficiently high Sobolev regularity. Moreover, we obtain a blow-up criterion for these solutions. In contrast to the wave maps equation we use a vanishing viscosity argument and an appropriate parabolic regularization in order to obtain the existence result. The geometric nature of the equation is exploited to prove convergence of the approximate solutions and uniqueness of the limit.


Zugehörige Institution(en) am KIT Institut für Analysis (IANA)
Sonderforschungsbereich 1173 (SFB 1173)
Publikationstyp Forschungsbericht
Jahr 2019
Sprache Englisch
Identifikator ISSN: 2365-662X
URN: urn:nbn:de:swb:90-893043
KITopen-ID: 1000089304
Verlag KIT, Karlsruhe
Umfang 21 S.
Serie CRC 1173 ; 2019/2
Projektinformation SFB 1173/1 (DFG, DFG KOORD, SFB 1173/1 2015)
Schlagworte higher order wave equations, wellposedness, high regularity
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft KITopen Landing Page