KIT | KIT-Bibliothek | Impressum | Datenschutz

Asymptotic preserving trigonometric integrators for the quantum Zakharov system

Baumstark, Simon; Schratz, Katharina

Abstract:

We present a new class of asymptotic preserving trigonometric integrators for the quantum Zakharov system. Their convergence holds in the strong quantum regime $\vartheta = 1$ as well as in the classical regime $\vartheta\to0$ without imposing any step size restrictions. Moreover, the new schemes are asymptotic preserving and converge to the classical Zakharov system in the limit $\vartheta\to0$ uniformly in the time discretization parameter. Numerical experiments underline the favorable error behavior of the new schemes with first- and second-order time convergence uniformly in $\vartheta$, first-order asymptotic convergence in $\vartheta$ and long time structure preservation properties.


Volltext §
DOI: 10.5445/IR/1000090473
Veröffentlicht am 05.02.2019
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Angewandte und Numerische Mathematik (IANM)
Sonderforschungsbereich 1173 (SFB 1173)
Publikationstyp Forschungsbericht/Preprint
Publikationsjahr 2019
Sprache Englisch
Identifikator ISSN: 2365-662X
urn:nbn:de:swb:90-904731
KITopen-ID: 1000090473
Verlag Karlsruher Institut für Technologie (KIT)
Umfang 18 S.
Serie CRC 1173 ; 2019/4
Projektinformation SFB 1173/1 (DFG, DFG KOORD, SFB 1173/1 2015)
Schlagwörter quantum Zakharov system, numerical scheme, convergence
Relationen in KITopen
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page