KIT | KIT-Bibliothek | Impressum | Datenschutz

Minimizing Bias in Estimation of Mutual Information from Data Streams

Arzamasov, Vadim; Böhm, Klemens; Rutter, Ignaz

Abstract:

Mutual information is a measure for both linear and non-linear associations between variables. There exist several estimators of mutual information for static data. In the dynamic case, one needs to apply these estimators to samples of points from data streams. The sampling should be such that more detailed information on the recent past is available. We formulate a list of natural requirements an estimator of mutual information on data streams should fulfill, and we propose two approaches which do meet all of them. Finally, we compare our algorithms to an existing method both theoretically and experimentally. Our findings include that our approaches are faster and have lower bias and better memory complexity.


Volltext §
DOI: 10.5445/IR/1000091969
Veröffentlicht am 11.03.2019
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Programmstrukturen und Datenorganisation (IPD)
Publikationstyp Forschungsbericht/Preprint
Publikationsjahr 2019
Sprache Englisch
Identifikator ISSN: 2190-4782
urn:nbn:de:swb:90-919698
KITopen-ID: 1000091969
Verlag Karlsruher Institut für Technologie (KIT)
Umfang 16 S.
Serie Karlsruhe Reports in Informatics ; 2019,2
Schlagwörter mutual information, data streams, KSG estimator, biased sampling
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page