KIT | KIT-Bibliothek | Impressum | Datenschutz
Open Access Logo
DOI: 10.5445/KSP/1000085952/08
Veröffentlicht am 12.03.2019

An evaluation of the IFCS Cluster Benchmarking Data Analysis Challenge

Hennig, Christian

Eight clusterings of a lower back pain dataset were submitted to the IFCS Benchmarking Cluster Analysis Challenge. The aim of the challenge was to find clusterings of the 112 baseline variables that help with predicting 9 outcome variables. These clusterings are compared here, using data visualisation (multidimensional scaling and discriminant coordinates on both baseline and outcome variables), outcome means and uncertainty intervals, and four cluster validation indices, namely the Average SilhouetteWidth, the Pearson correlation version of Hubert’s $\Gamma$, the Calinski/Harabasz index, and the Adjusted Rand Index. The different comparison approaches give quite different assessments of the clustering quality.

Zugehörige Institution(en) am KIT Institut für Informationswirtschaft und Marketing (IISM)
Publikationstyp Zeitschriftenaufsatz
Jahr 2019
Sprache Englisch
Identifikator ISSN: 2510-0564
URN: urn:nbn:de:swb:90-920557
KITopen-ID: 1000092055
Erschienen in Archives of Data Science, Series B (Online First)
Band 1
Heft 1
Seiten 24 S. online
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft KITopen Landing Page