KIT | KIT-Bibliothek | Impressum | Datenschutz

Effective numerical simulation of the Klein–Gordon–Zakharov system in the Zakharov limit

Baumstark, Simon; Schneider, Guido; Schratz, Katharina

Solving the Klein-Gordon-Zakharov (KGZ) system in the high-plasma frequency regime $c\gg1$ is numerically severely challenging due to the highly oscillatory nature or the problem. To allow reliable approximations classical numerical schemes require severe step size restrictions depending on the small parameter $c^{−2}$ . This leads to large errors and huge computational costs. In the singular limit $c\to\infty$ the Zakharov system appears as the regular limit system for the KGZ system. It is the purpose of this paper to use this approximation in the construction of an effective numerical scheme for the KGZ system posed on the torus in the highly oscillatory regime $c\gg1$. The idea is to filter out the highly oscillatory phases explicitly in the solution. This allows us to play back the numerical task to solving the non-oscillatory Zakharov limit system. The latter can be solved very efficiently without any step size restrictions. The numerical approximation error is then estimated by showing that solutions of the KGZ system in this singular limit can be approximated via the solutions of the Zakharov system and by proving error estimates for the numerical approximation of the Zakharov system. ... mehr

Open Access Logo

Volltext §
DOI: 10.5445/IR/1000092079
Veröffentlicht am 13.03.2019
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Angewandte und Numerische Mathematik (IANM)
Sonderforschungsbereich 1173 (SFB 1173)
Publikationstyp Forschungsbericht/Preprint
Publikationsjahr 2019
Sprache Englisch
Identifikator ISSN: 2365-662X
KITopen-ID: 1000092079
Verlag Karlsruher Institut für Technologie (KIT)
Umfang 15 S.
Serie CRC 1173 ; 2019/7
Projektinformation SFB 1173/1 (DFG, DFG KOORD, SFB 1173/1 2015)
Schlagwörter effective models, highly oscillatory problems
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page