KIT | KIT-Bibliothek | Impressum | Datenschutz

Training data and emulators for the analysis of sensitivity of deep convective clouds and hail to environmental conditions and microphysics

Wellmann, Marie-Constanze

Abstract (englisch):
This study aims to identify whether model parameters describing atmospheric conditions such as wind shear or model parameters related to cloud microphysics such as the fall velocity of hail lead to larger uncertainties in the prediction of deep convective clouds.
In an idealized setup of a cloud-resolving model including a two-moment microphysics scheme we use the approach of statistical emulation to allow for a Monte Carlo sampling of the parameter space, which enables a comprehensive sensitivity analysis. We analyze the impact of three sets of input parameters (environmental conditions, microphysics, combined) on cloud properties (vertically integrated content of six hydrometeor classes), precipitation, the size distribution of hail and diabatic heating rates.
This dataset contains the processed model output and the generated emulators when the convection is triggered by a warm bubble.

Open Access Logo


Zugehörige Institution(en) am KIT Institut für Meteorologie und Klimaforschung - Forschungsbereich Troposphäre (IMK-TRO)
Publikationstyp Forschungsdaten/Bilder
Jahr 2019
Erstellungszeitraum 01.03.2019
Identifikator DOI (KIT): 10.5445/IR/1000093886
KITopen-ID: 1000093886
Lizenz CC BY-SA 4.0: Creative Commons Namensnennung – Weitergabe unter gleichen Bedingungen 4.0 International
Liesmich

The csv-files contain the processed model output (spatio-temporal means or maximum values) for output parameters of interest. This dataset was used to train the emulators which are also included as R workspaces. The R package "Sensitivity" is necessary to perform sensitivity analyses using the emulators.

Art der Forschungsdaten Dataset
Relationen in KITopen
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page