KIT | KIT-Bibliothek | Impressum | Datenschutz

Back Pain: A Spectral Clustering Approach

Fitch, Joseph; Khan, Nazia; Tortora, Cristina

We used a spectral clustering algorithm to find clusters among medical patients with lower back pain symptoms, and then we assessed the health outcomes within each cluster. First, we mapped all of the variables onto [0,1] intervals. This allowed us to compute a similarity score between every pair of patients, using an adaptation of Pearson correlation. We then calculated the spectral (eigen) decomposition of this similarity matrix, and we used the first few eigenvectors to create a low-dimensional subspace. Finally, we performed k–means clustering in this new subspace to find four clusters. We compared the cluster means and variances for each recovery assessment variable to differentiate the health outcomes for each cluster. Lastly, we highlighted the identifying symptoms of each patient cluster by inspecting any variable whose within–cluster average is extraordinarily low or high, relative to the other clusters.

Open Access Logo

Verlagsausgabe §
DOI: 10.5445/KSP/1000085952/07
Veröffentlicht am 30.04.2019
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Informationswirtschaft und Marketing (IISM)
Publikationstyp Zeitschriftenaufsatz
Publikationsjahr 2019
Sprache Englisch
Identifikator ISSN: 2510-0564
KITopen-ID: 1000094118
Erschienen in Archives of Data Science, Series B (Online First)
Band 1
Heft 1
Seiten B07, 16 S. online
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page