KIT | KIT-Bibliothek | Impressum | Datenschutz

Online Linear Discriminant Analysis for Data Streams with Concept Drift

Schnackenberg, Sarah; Ligges, Uwe; Weihs, Claus


Various methods based on classical classification methods such as linear discriminant analysis (LDA) have been developed for working on data streams in situations with concept drift. Nevertheless, the updated classifiers of such methods may result in a bad prediction error rate in case the underlying distribution incrementally changes further on. Therefore, we invented a rather general extension to such methods to improve the forecasting quality. Under some assumptions we estimate a model for the time-dependent concept drift that is used to predict the forthcoming distributions of the features. These predictions of distributions are finally used in the LDA to build the classification rule and hence for predicting new observations. In a simulation study we consider different kinds of concept drift and compare the new extended methods with the methods these are based on.

Verlagsausgabe §
DOI: 10.5445/KSP/1000087327/02
Veröffentlicht am 17.06.2019
Cover der Publikation
Zugehörige Institution(en) am KIT Fakultät für Wirtschaftswissenschaften – Institut für Informationswirtschaft und Marketing (IISM)
Publikationstyp Zeitschriftenaufsatz
Publikationsjahr 2018
Sprache Englisch
Identifikator ISSN: 2363-9881
KITopen-ID: 1000095893
Erschienen in Archives of Data Science, Series A (Online First)
Band 5
Heft 1
Seiten A02, 20 S. online
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page