KIT | KIT-Bibliothek | Impressum | Datenschutz

Design, Implementation and Evaluation of Reinforcement Learning for an Adaptive Order Dispatching in Job Shop Manufacturing Systems

Kuhnle, Andreas 1; Schäfer, Louis 1; Stricker, Nicole 1; Lanza, Gisela 1
1 Institut für Produktionstechnik (WBK), Karlsruher Institut für Technologie (KIT)

Abstract:

Modern production systems tend to have smaller batch sizes, a larger product variety and more complex material flow systems. Since a human oftentimes can no longer act in a sufficient manner as a decision maker under these circumstances, the demand for efficient and adaptive control systems is rising. This paper introduces a methodical approach as well as guideline for the design, implementation and evaluation of Reinforcement Learning (RL) algorithms for an adaptive order dispatching. Thereby, it addresses production engineers willing to apply RL. Moreover, a real-world use case shows the successful application of the method and remarkable results supporting real-time decision-making. These findings comprehensively illustrate and extend the knowledge on RL.

Zugehörige Institution(en) am KIT Institut für Produktionstechnik (WBK)
Publikationstyp Zeitschriftenaufsatz
Publikationsjahr 2019
Sprache Englisch
Identifikator ISSN: 2212-8271
KITopen-ID: 1000096995
Erschienen in Procedia CIRP
Verlag Elsevier
Band 81
Seiten 234-239
Bemerkung zur Veröffentlichung 52nd CIRP Conference on Manufacturing Systems (CMS), Ljubljana, Slovenia, June 12-14, 2019. Ed.: P. Butala
Vorab online veröffentlicht am 24.06.2019
Nachgewiesen in Scopus
Dimensions
OpenAlex
Relationen in KITopen
Globale Ziele für nachhaltige Entwicklung Ziel 16 – Frieden, Gerechtigkeit und starke Institutionen

Verlagsausgabe §
DOI: 10.5445/IR/1000096995
Veröffentlicht am 20.05.2022
Originalveröffentlichung
DOI: 10.1016/j.procir.2019.03.041
Scopus
Zitationen: 70
Dimensions
Zitationen: 62
Seitenaufrufe: 287
seit 05.08.2019
Downloads: 155
seit 24.05.2022
Cover der Publikation
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page