KIT | KIT-Bibliothek | Impressum | Datenschutz

Air-Assisted Atomization at Constant Mass and Momentum Flow Rate: Investigation of the Ambient Pressure Influence with the SPH Method [in press]

Chaussonnet, Geoffroy; Joshi, Shreyas; Wachter, Simon; Koch, Rainer; Jakobs, Tobias; Kolb, Thomas; Bauer, Hans-Jörg

A twin-fluid atomizer configuration is simulated by means of the 2D weakly-compressible Smooth Particle Hydrodynamics method, and compared to experiments. The Gas-to-Liquid-Ratio, the momentum flux ratio and the velocity ratio are set constant for different ambient pressures, which leads to different gaseous flow sections. The objectives of this study are to (i) investigate the effect of ambient pressure at constant global parameters, and (ii) to verify the capability of 2D SPH to qualitatively predict the proper disintegration mechanism and to recover the correct evolution of the spray characteristics. The setup consists of an axial liquid jet of water fragmented by a co-flowing high-speed air stream (Ug = 80 m/s) in a pressurized atmosphere up to 16 bar. The results are compared to the experiment, and presented in terms of (i) mean velocity profiles, (ii) drop size distributions and (iii) Sauter Mean Diameter of the spray. It is found that there exists an optimal pressure to minimize the mean size of the spray droplets. Finally, two new quantities related to atomization are presented: (i) the breakup activity that quantifies the number of breakup events per time and volume unit and (ii) the fragmentation spectrum of the whole breakup chain, which characterizes the cascade phenomenon in terms of probability. ... mehr

Zugehörige Institution(en) am KIT Institut für Thermische Strömungsmaschinen (ITS)
Institut für Technische Chemie (ITC)
Publikationstyp Proceedingsbeitrag
Publikationsjahr 2019
Sprache Englisch
Identifikator KITopen-ID: 1000097128
HGF-Programm 34.14.02 (POF III, LK 01)
Erschienen in Proceedings of the ASME Turbo Expo 2019: Turbomachinery Technical Conference and Exposition (GT2019)
Veranstaltung Turbomachinery Technical Conference & Exposition (Turbo Expo 2019), Phoenix, AZ, USA, 17.06.2019 – 21.06.2019
Schlagwörter liquid atomization fuel injection smoothed particle hydrodynamics
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page