Cryptography grew to be much more than "the study of secret writing". Modern cryptography is concerned with establishing properties such as privacy, integrity and authenticity in protocols for secure communication and computation. This comes at a price: Cryptographic tools usually introduce an overhead, both in terms of communication complexity (that is, number and size of messages transmitted) and computational efficiency (that is, time and memory required). As in many settings communication between the parties involved is the bottleneck, this thesis is concerned with improving communication complexity in cryptographic protocols.
One direction towards this goal is scalable cryptography: In many cryptographic schemes currently deployed, the security degrades linearly with the number of instances (e.g. encrypted messages) in the system. As this number can be huge in contexts like cloud computing, the parameters of the scheme have to be chosen considerably larger - and in particular depending on the expected number of instances in the system - to maintain security guarantees. We advance the state-of-the-art regarding scalable cryptography by constructing schemes where the security guarantees are independent of the number of instances. ... mehrThis allows to choose smaller parameters, even when the expected number of instances is immense.
- We construct the first scalable encryption scheme with security against active adversaries which has both compact public keys and ciphertexts. In particular, we significantly reduce the size of the public key to only about 3% of the key-size of the previously most efficient scalable encryption scheme. (Gay,Hofheinz, and Kohl, CRYPTO, 2017)
- We present a scalable structure-preserving signature scheme which improves both in terms of public-key and signature size compared to the previously best construction to about 40% and 56% of the sizes, respectively. (Gay, Hofheinz, Kohl, and Pan, EUROCRYPT, 2018)
Another important area of cryptography is secure multi-party computation, where the goal is to jointly evaluate some function while keeping each party’s input private. In traditional approaches towards secure multi-party computation either the communication complexity scales linearly in the size of the function, or the computational efficiency is poor. To overcome this issue, Boyle, Gilboa, and Ishai (CRYPTO, 2016) introduced the notion of homomorphic secret sharing. Here, inputs are shared between parties such that each party does not learn anything about the input, and such that the parties can locally evaluate functions on the shares. Homomorphic secret sharing implies secure computation where the communication complexity only depends on the size of the inputs, which is typically much smaller than the size of the function. A different approach towards efficient secure computation is to split the protocol into an input-independent preprocessing phase, where long correlated strings are generated, and a very efficient online phase. One example for a useful correlation are authenticated Beaver triples, which allow to perform efficient multiplications in the online phase such that privacy of the inputs is preserved and parties deviating the protocol can be detected. The currently most efficient protocols implementing the preprocessing phase require communication linear in the number of triples to be generated. This results typically in high communication costs, as the online phase requires at least one authenticated Beaver triple per multiplication.
We advance the state-of-the art regarding efficient protocols for secure computation with low communication complexity as follows.
- We construct the first homomorphic secret sharing scheme for computing arbitrary functions in NC 1 (that is, functions that are computably by circuits with logarithmic depth) which supports message spaces of arbitrary size, has only negligible correctness error, and does not require expensive multiplication on ciphertexts. (Boyle, Kohl, and Scholl, EUROCRYPT, 2019)
- We introduce the notion of a pseudorandom correlation generator for general correlations. Pseudorandom correlation generators allow to locally extend short correlated seeds into long pseudorandom correlated strings. We show that pseudorandom correlation generators can replace the preprocessing phase in many protocols, leading to a preprocessing phase with sublinear communication complexity. We show connections to homomorphic secret sharing schemes and give the first instantiation of pseudorandom correlation generators for authenticated Beaver triples at reasonable computational efficiency. (Boyle, Couteau, Gilboa, Ishai, Kohl, and Scholl, CRYPTO, 2019)