KIT | KIT-Bibliothek | Impressum | Datenschutz

Quantitative Explanation as a Tight Coupling of Data, Model, and Theory

Krüger, Alexander; Tünnermann, Jan; Rohlfing, Katharina; Scharlau, Ingrid

What does it mean to explain data patterns? Cognitive psychologists and other scientists face this question when observable phenomena have to be explained in theoretical terms. Frequentist null-hypothesis testing – one prominent approach in psychology – controls error rates. Machine learning – an alternative prominent outside of, but not yet inside psychology – focuses on precise predictions. However, both alternatives often provide little insight into the data. We propose a combination of formal modeling and Bayesian statistical inference to ground explanations in data analysis. We support this approach by reference to philosophy of science and discussions of the current methods crisis in several empirical sciences and illustrate it with an example from visual attention research.

Verlagsausgabe §
DOI: 10.5445/KSP/1000087327/10
Veröffentlicht am 11.12.2019
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Informationswirtschaft und Marketing (IISM)
Publikationstyp Zeitschriftenaufsatz
Publikationsjahr 2018
Sprache Englisch
Identifikator ISSN: 2363-9881
KITopen-ID: 1000100802
Erschienen in Archives of Data Science, Series A (Online First)
Band 5
Heft 1
Seiten A10, 27 S. online
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page