KIT | KIT-Bibliothek | Impressum | Datenschutz

Supervised and Semi-Supervised Self-Organizing Maps for Regression and Classification Focusing on Hyperspectral Data

Riese, Felix M.; Keller, Sina; Hinz, Stefan

Abstract (englisch):
Machine learning approaches are valuable methods in hyperspectral remote sensing, especially for the classification of land cover or for the regression of physical parameters. While the recording of hyperspectral data has become affordable with innovative technologies, the acquisition of reference data (ground truth) has remained expensive and time-consuming. There is a need for methodological approaches that can handle datasets with significantly more hyperspectral input data than reference data. We introduce the Supervised Self-organizing Maps (SuSi) framework, which can perform unsupervised, supervised and semi-supervised classification as well as regression on high-dimensional data. The methodology of the SuSi framework is presented and compared to other frameworks. Its different parts are evaluated on two hyperspectral datasets. The results of the evaluations can be summarized in four major findings: (1) The supervised and semi-Supervised Self-organizing Maps (SOM) outperform random forest in the regression of soil moisture. (2) In the classification of land cover, the supervised and semi-supervised SOM reveal great potential. (3) The unsupervised SOM is a valuable tool to understand the data. ... mehr

Open Access Logo

Verlagsausgabe §
DOI: 10.5445/IR/1000104401
Veröffentlicht am 19.12.2019
DOI: 10.3390/rs12010007
Zitationen: 7
Web of Science
Zitationen: 5
Cover der Publikation
Zugehörige Institution(en) am KIT Fakultät für Bauingenieur-, Geo- und Umweltwissenschaften (BGU)
Institut für Photogrammetrie und Fernerkundung (IPF)
Publikationstyp Zeitschriftenaufsatz
Publikationsjahr 2020
Sprache Englisch
Identifikator ISSN: 2072-4292
KITopen-ID: 1000104401
Erschienen in Remote sensing
Verlag MDPI
Band 12
Heft 1
Seiten Art. Nr.: 7
Bemerkung zur Veröffentlichung This paper is an extended version of our paper published in arXiv:1903.11114.
Gefördert durch den KIT-Publikationsfonds
Gefördert vom Ministerium für Wissenschaft, Forschung und Kunst Baden-Württemberg (MWK) im Rahmen des Open-Access-Förderprogramms "BW BigDIWA"
Vorab online veröffentlicht am 18.12.2019
Externe Relationen Siehe auch
Nachgewiesen in Scopus
Web of Science
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page