KIT | KIT-Bibliothek | Impressum | Datenschutz

Monotonicity in inverse obstacle scattering on unbounded domains

Albicker, Annalena; Griesmaier, Roland

Abstract:

We consider an inverse obstacle scattering problem for the Helmholtz equation with obstacles that carry mixed Dirichlet and Neumann boundary conditions. We discuss far field operators that map superpositions of plane wave incident fields to far field patterns of scattered waves, and we derive monotonicity relations for the eigenvalues of suitable modifications of these operators. These monotonicity relations are then used to establish a novel characterization of the support of mixed obstacles in terms of the corresponding far field operators. We apply this characterization in reconstruction schemes for shape detection and object classification, and we present numerical results to illustrate our theoretical findings.


Volltext §
DOI: 10.5445/IR/1000117730
Veröffentlicht am 26.03.2020
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Angewandte und Numerische Mathematik (IANM)
Sonderforschungsbereich 1173 (SFB 1173)
Publikationstyp Forschungsbericht/Preprint
Publikationsjahr 2020
Sprache Englisch
Identifikator ISSN: 2365-662X
KITopen-ID: 1000117730
Verlag Karlsruher Institut für Technologie (KIT)
Umfang 27 S.
Serie CRC 1173 Preprint ; 2020/6
Projektinformation SFB 1173/2 (DFG, DFG KOORD, SFB 1173/2 2019)
Externe Relationen Siehe auch
Schlagwörter inverse scattering, Helmholtz equation, monotonicity, far field operator, obstacles
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page