KIT | KIT-Bibliothek | Impressum | Datenschutz

Front and Back‐Junction Carbon Nanotube‐Silicon Solar Cells with an Industrial Architecture [in press]

Chen, Jianhui; Tune, Daniel D.; Ge, Kunpeng; Li, Han; Flavel, Benjamin S.

Abstract:
In the past, the application of carbon nanotube-silicon solar cell technology to industry has been limited by the use of a metallic frame to define an active area in the middle of a silicon wafer. Here, industry standard device geometries are fabricated with a front and back-junction design which allow for the entire wafer to be used as the active area. These are enabled by the use of an intermixed Nafion layer which simultaneously acts as a passivation, antireflective, and physical blocking layer as well as a nanotube dopant. This leads to the formation of a hybrid nanotube/Nafion passivated charge selective contact, and solar cells with active areas of 1–16 cm$^{2}$ are fabricated. Record maximum power conversion efficiencies of 15.2% and 18.9% are reported for front and back-junction devices for 1 and 3 cm$^{2}$ active areas, respectively. By placing the nanotube film on the rear of the device in a back-junction architecture, many of the design-related challenges for carbon nanotube silicon solar cells are addressed and their future applications to industrialized processes are discussed.

Open Access Logo


Verlagsausgabe §
DOI: 10.5445/IR/1000117766
Veröffentlicht am 17.03.2020
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Nanotechnologie (INT)
Publikationstyp Zeitschriftenaufsatz
Publikationsjahr 2020
Sprache Englisch
Identifikator ISSN: 1616-301X, 1616-3028
KITopen-ID: 1000117766
Erschienen in Advanced functional materials
Vorab online veröffentlicht am 27.02.2020
Nachgewiesen in Web of Science
Scopus
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page