KIT | KIT-Bibliothek | Impressum | Datenschutz

Palladium-Based Bimetallic Nanocrystal Catalysts for the Direct Synthesis of Hydrogen Peroxide

Wang, Sheng 1; Doronkin, Dmitry E. ORCID iD icon 1,2; Hähsler, Martin 1; Huang, Xiaohui 3; Wang, Di ORCID iD icon 3,4; Grunwaldt, Jan-Dierk ORCID iD icon 1,2; Behrens, Silke 1
1 Institut für Katalyseforschung und -technologie (IKFT), Karlsruher Institut für Technologie (KIT)
2 Institut für Technische Chemie und Polymerchemie (ITCP), Karlsruher Institut für Technologie (KIT)
3 Institut für Nanotechnologie (INT), Karlsruher Institut für Technologie (KIT)
4 Karlsruhe Nano Micro Facility (KNMF), Karlsruher Institut für Technologie (KIT)

Abstract:

The direct synthesis of H$_{2}$O$_{2}$ from H$_{2}$ and O$_{2}$ is a strongly desired reaction for green processes and a promising alternative to the commercialized anthraquinone process. The design of efficient catalysts with high activity and H$_{2}$O$_{2}$ selectivity is highly desirable and yet challenging. Metal dopants enhance the performance of the active phase by increasing reaction rates, stability, and/or selectivity. The identification of efficient dopants relies mostly on catalysts prepared with a random and non‐uniform deposition of active and promoter phases. To study the promotional effects of metal doping on Pd catalysts, we employ colloidal, bimetallic nanocrystals (NCs) to produce catalysts in which the active and doping metals are colocalized to a fine extent. In the absence of any acid and halide promotors, PdSn and PdGa NCs supported on acid‐pretreated TiO$_{2}$ (PdSn/s‐TiO$_{2}$, PdGa/s‐TiO$_{2}$) were highly efficient and outperformed the monometallic Pd catalyst (Pd/s‐TiO$_{2}$), whereas in the presence of an acid promotor, the overall H$_{2}$O$_{2}$ productivity was also further enhanced for the Ni‐, Ga‐, In‐, and Sn‐doped catalysts with respect to Pd/s‐TiO$_{2}$.


Verlagsausgabe §
DOI: 10.5445/IR/1000117919
Veröffentlicht am 17.07.2020
Originalveröffentlichung
DOI: 10.1002/cssc.202000407
Scopus
Zitationen: 32
Web of Science
Zitationen: 28
Dimensions
Zitationen: 34
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Katalyseforschung und -technologie (IKFT)
Institut für Nanotechnologie (INT)
Karlsruhe Nano Micro Facility (KNMF)
Publikationstyp Zeitschriftenaufsatz
Publikationsdatum 19.06.2020
Sprache Englisch
Identifikator ISSN: 1864-5631, 1864-564X
KITopen-ID: 1000117919
HGF-Programm 43.22.02 (POF III, LK 01) Nanocatalysis
Erschienen in ChemSusChem
Verlag Wiley-VCH Verlag
Band 13
Heft 12
Seiten 3243-3251
Vorab online veröffentlicht am 31.03.2020
Schlagwörter 2018-020-022709, TEM
Nachgewiesen in Scopus
Web of Science
Dimensions
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page