KIT | KIT-Bibliothek | Impressum | Datenschutz

Optimization of glycolipid synthesis in hydrophilic deep eutectic solvents

Hollenbach, R.; Bindereif, B.; Van Der Schaaf, U.S.; Ochsenreither, K.; Syldatk, C.

Abstract (englisch):
Glycolipids are considered an alternative to petrochemically based surfactants because they are non-toxic, biodegradable, and less harmful to the environment while having comparable surface-active properties. They can be produced chemically or enzymatically in organic solvents or in deep eutectic solvents (DES) from renewable resources. DES are non-flammable, non-volatile, biodegradable, and almost non-toxic. Unlike organic solvents, sugars are easily soluble in hydrophilic DES. However, DES are highly viscous systems and restricted mass transfer is likely to be a major limiting factor for their application. Limiting factors for glycolipid synthesis in DES are not generally well understood. Therefore, the influence of external mass transfer, fatty acid concentration, and distribution on initial reaction velocity in two hydrophilic DES (choline:urea and choline:glucose) was investigated. At agitation speeds of and higher than 60 rpm, the viscosity of both DES did not limit external mass transfer. Fatty acid concentration of 0.5 M resulted in highest initial reaction velocity while higher concentrations had negative effects. Fatty acid accessibility was identified as a limiting factor for glycolipid synthesis in hydrophilic DES. ... mehr

Open Access Logo


Verlagsausgabe §
DOI: 10.5445/IR/1000119141
Veröffentlicht am 11.05.2020
Originalveröffentlichung
DOI: 10.3389/fbioe.2020.00382
Scopus
Zitationen: 1
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Bio- und Lebensmitteltechnik (BLT)
Publikationstyp Zeitschriftenaufsatz
Publikationsdatum 05.05.2020
Sprache Englisch
Identifikator ISSN: 2296-4185
KITopen-ID: 1000119141
Erschienen in Frontiers in Bioengineering and Biotechnology
Band 8
Seiten Art.-Nr.: 382
Schlagwörter glycolipid, deep eutectic solvents, enzymatic synthesis, mass transfer, viscosity, Candida antarctica lipase B
Nachgewiesen in Scopus
Web of Science
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page