KIT | KIT-Bibliothek | Impressum | Datenschutz

Multiple solutions to cylindrically symmetric curl-curl problems and related Schrödinger equations with singular potentials

Gaczkowski, Michał; Mederski, Jarosław; Schino, Jacopo


We look for multiple solutions $\mathbf{U}:\mathbb{R}^3\to\mathbb{R}^3$ to the curl-curl problem
$$\nabla\times\nabla\times\mathbf{U}=h(x,\mathbf{U}),\qquad x\in\mathbb{R}^3,$$
with a nonlinear function $h:\mathbb{R}^3\times\mathbb{R}^3\to\mathbb{R}^3$ which has subcritical growth at infinity or is critical in $\mathbb{R}^3$ , i.e. $h(x, \mathbf{U}) = |\mathbf{U}|^4 \mathbf{U}$. If $h$ is radial in $\mathbf{U}$, $N=3$, $K=2$ and $a=1$ below, then we show that the solutions to the problem above are in one to one correspondence with the solutions to the following Schrödinger equation
$$-\Delta u+\frac{a}{r^2}u=f(x,u),\qquad u:\mathbb{R}^N\to\mathbb{R},$$
where $x=(y, z)\in\mathbb{R}^K\times\mathbb{R}^{N-K}$, $N>K\ge2$, $r=|y|$ and $a>a_0\in(−∞, 0]$. In the subcritical case, applying a critical point theory to the Schrödinger equation above, we find infinitely many bound states for both problems. In the critical case, however, the multiplicity problem for the latter equation has been studied only in the autonomous case $a=0$ and the available methods seem to be insufficient for the problem involving the singular potential, i.e. ... mehr

Volltext §
DOI: 10.5445/IR/1000120066
Veröffentlicht am 09.06.2020
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Analysis (IANA)
Sonderforschungsbereich 1173 (SFB 1173)
Publikationstyp Forschungsbericht/Preprint
Publikationsjahr 2020
Sprache Englisch
Identifikator ISSN: 2365-662X
KITopen-ID: 1000120066
Verlag Karlsruher Institut für Technologie (KIT)
Umfang 21 S.
Serie CRC 1173 Preprint ; 2020/18
Projektinformation SFB 1173/2 (DFG, DFG KOORD, SFB 1173/2 2019)
Schlagwörter Maxwell equations, curl-curl problem, quintic effect, Schrödinger equation, singular potential, variational methods
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page