KIT | KIT-Bibliothek | Impressum | Datenschutz

Cohomogeneity one Alexandrov spaces in low dimensions

Galaz-García, Fernando 1; Zarei, Masoumeh 1
1 Institut für Algebra und Geometrie (IAG), Karlsruher Institut für Technologie (KIT)

Abstract:

Alexandrov spaces are complete length spaces with a lower curvature bound in the triangle comparison sense. When they are equipped with an effective isometric action of a compact Lie group with one-dimensional orbit space, they are said to be of cohomogeneity one. Well-known examples include cohomogeneity-one Riemannian manifolds with a uniform lower sectional curvature bound; such spaces are of interest in the context of non-negative and positive sectional curvature. In the present article we classify closed, simply connected cohomogeneity-one Alexandrov spaces in dimensions 5, 6 and 7. This yields, in combination with previous results for manifolds and Alexandrov spaces, a complete classification of closed, simply connected cohomogeneity-one Alexandrov spaces in dimensions at most 7.


Verlagsausgabe §
DOI: 10.5445/IR/1000122717
Veröffentlicht am 17.08.2020
Originalveröffentlichung
DOI: 10.1007/s10455-020-09716-7
Scopus
Zitationen: 2
Web of Science
Zitationen: 2
Dimensions
Zitationen: 3
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Algebra und Geometrie (IAG)
Publikationstyp Zeitschriftenaufsatz
Publikationsmonat/-jahr 09.2020
Sprache Englisch
Identifikator ISSN: 0232-704X, 1572-9060
KITopen-ID: 1000122717
Erschienen in Annals of global analysis and geometry
Verlag Springer
Band 58
Heft 2
Seiten 109–146
Vorab online veröffentlicht am 07.07.2020
Nachgewiesen in Web of Science
Dimensions
Scopus
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page