KIT | KIT-Bibliothek | Impressum | Datenschutz

Cody: An Interactive Machine Learning System for Qualitative Coding

Rietz, Tim; Toreini, Peyman; Maedche, Alexander

Abstract:

Qualitative coding, the process of assigning labels to text as part of qualitative analysis, is time-consuming and repetitive, especially for large datasets. While available QDAS sometimes allows the semi-automated extension of annotations to unseen data, recent user studies revealed critical issues. In particular, the integration of automated code suggestions into the coding process is not transparent and interactive. In this work, we present Cody, a system for semi-automated qualitative coding that suggests codes based on human-defined coding rules and supervised machine learning (ML). Suggestions and rules can be revised iteratively by users in a lean interface that provides explanations for code suggestions. In a preliminary evaluation, 42% of all documents could be coded automatically based on code rules. Cody is the first coding system to allow users to define query-style code rules in combination with supervised ML. Thereby, users can extend manual annotations to unseen data to improve coding speed and quality.


Volltext §
DOI: 10.5445/IR/1000122802
Veröffentlicht am 24.08.2020
Originalveröffentlichung
DOI: 10.1145/3379350.3416195
Dimensions
Zitationen: 2
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Wirtschaftsinformatik und Marketing (IISM)
Publikationstyp Poster
Publikationsjahr 2020
Sprache Englisch
Identifikator KITopen-ID: 1000122802
Veranstaltung ACM Symposium on User Interface Software and Technology (UIST 2020), Online, 20.10.2020 – 23.10.2020
Bemerkung zur Veröffentlichung Die Veranstaltung findet wegen der Corona-Pandemie als Online-Event statt
Schlagwörter Qualitative coding; Supervised machine learning
Nachgewiesen in Dimensions
Relationen in KITopen
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page