KIT | KIT-Bibliothek | Impressum | Datenschutz

A 3D track finder for the Belle II CDC L1 trigger

Skambraks, S.; Bähr, S.; Becker, J.; Kiesling, C.; McCarney, S.; Meggendorfer, F.; Tonder, R. V.; Lukas Unger, K.

Machine learning methods are integrated into the pipelined first level (L1) track trigger of the upgraded flavor physics experiment Belle II at KEK in Tsukuba, Japan. The novel triggering techniques cope with the severe background from events outside the small collision region provided by the new SuperKEKB asymmetric-energy electron-positron collider. Using the precise drift-time information of the central drift chamber which provides axial and stereo wire layers, a neural network L1 trigger estimates the 3D track parameters of tracks, based on input from the axial wire planes provided by a 2D track finder. An extension of this 2D Hough track finder to a 3D finder is proposed, where the single hit representations in the Hough plane are trained using Monte Carlo. This 3D finder improves the track finding efficiency by including the stereo sense wires as input. The estimated polar track angle allows a specialization of the subsequent neural networks to sectors in the polar angle.

Open Access Logo

Verlagsausgabe §
DOI: 10.5445/IR/1000123019
Veröffentlicht am 13.09.2020
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Technik der Informationsverarbeitung (ITIV)
Institut für Theoretische Teilchenphysik (TTP)
Publikationstyp Zeitschriftenaufsatz
Publikationsdatum 07.07.2020
Sprache Englisch
Identifikator ISSN: 1742-6588, 1742-6596
KITopen-ID: 1000123019
Erschienen in Journal of physics / Conference series
Band 1525
Heft 1
Seiten Art. Nr.: 012102
Nachgewiesen in Dimensions
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page