KIT | KIT-Bibliothek | Impressum | Datenschutz

Classification of specimen density in Laser Powder Bed Fusion (L-PBF) using in-process structure-borne acoustic process emissions

Eschner, N. 1; Weiser, L. ORCID iD icon 1; Häfner, B. 1; Lanza, G. 1
1 Institut für Produktionstechnik (WBK), Karlsruher Institut für Technologie (KIT)

Abstract:

Currently, the laser powder bed fusion (L-PBF) process cannot offer a reproducible and predefined quality of the processed parts. Recent research on process monitoring focuses strongly on integrated optical measurement technology. Besides optical sensors, acoustic sensors also seem promising. Previous studies have shown the potential of analyzing structure-borne and air-borne acoustic emissions in laser welding. Only a few works evaluate the potential that lies in the usage during the L-PBF process.
This work shows how the approach to structure-borne acoustic process monitoring can be elaborated by correlating acoustic signals to statistical values indicating part quality. Density measurements according to Archimedes’ principle are used to label the layer-based acoustic data and to measure the quality. The data set is then treated as a classification problem while investigating the applicability of existing artificial neural network algorithms to match acoustic data with density measurements. Furthermore, this work investigates the transferability of the approach to more complex specimens.


Verlagsausgabe §
DOI: 10.5445/IR/1000123968
Veröffentlicht am 24.09.2020
Originalveröffentlichung
DOI: 10.1016/j.addma.2020.101324
Scopus
Zitationen: 69
Web of Science
Zitationen: 57
Dimensions
Zitationen: 74
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Produktionstechnik (WBK)
Publikationstyp Zeitschriftenaufsatz
Publikationsmonat/-jahr 08.2020
Sprache Englisch
Identifikator ISSN: 2214-8604
KITopen-ID: 1000123968
Erschienen in Additive manufacturing
Verlag Elsevier
Band 34
Seiten Art. Nr. 101324
Schlagwörter Laser Powder bed fusion, Process monitoring, Acoustic emission, Machine learning, Artificial neural network, Selective laser melting
Nachgewiesen in Dimensions
Scopus
Web of Science
Globale Ziele für nachhaltige Entwicklung Ziel 9 – Industrie, Innovation und Infrastruktur
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page