KIT | KIT-Bibliothek | Impressum | Datenschutz

Some non-homogeneous Gagliardo–Nirenberg inequalities and application to a biharmonic non-linear Schrödinger equation

Fernández, Antonio J.; Jeanjean, Louis; Mandel, Rainer; Mariş, Mihai

Abstract:
We study the standing waves for a fourth-order Schrödinger equation with mixed dispersion that minimize the associated energy when the $L^2$-norm (the $\textit{mass}$) is kept fixed. We need some non-homogeneous Gagliardo−Nirenberg-type inequalities and we develop a method to prove such estimates that should be useful elsewhere. We prove optimal results on the existence of minimizers in the $\textit{mass-subcritical}$ and $\textit{mass-critical}$ cases. In the $\textit{mass super-critical}$ case we show that global minimizers do not exist, and we investigate the existence of local minimizers. If the mass does not exceed some threshold $μ_0\in (0,+\infty)$, our results on "best" local minimizers are also optimal.

Open Access Logo


Volltext §
DOI: 10.5445/IR/1000124276
Veröffentlicht am 07.10.2020
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Analysis (IANA)
Sonderforschungsbereich 1173 (SFB 1173)
Publikationstyp Forschungsbericht/Preprint
Publikationsmonat/-jahr 10.2020
Sprache Englisch
Identifikator ISSN: 2365-662X
KITopen-ID: 1000124276
Verlag KIT, Karlsruhe
Umfang 46 S.
Serie CRC Preprint ; 2020/27
Projektinformation SFB 1173/2 (DFG, DFG KOORD, SFB 1173/2 2019)
Externe Relationen Siehe auch
Schlagwörter Gagliardo-Nirenberg inequalities, biharmonic NLS, variational methods
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page