KIT | KIT-Bibliothek | Impressum | Datenschutz

Testing multivariate normality by zeros of the harmonic oscillator in characteristic function spaces

Dörr, Philip 1; Ebner, Bruno 1; Henze, Norbert 1
1 Institut für Stochastik (STOCH), Karlsruher Institut für Technologie (KIT)

Abstract:

We study a novel class of affine invariant and consistent tests for normality in any dimension in an i.i.d.‐setting. The tests are based on a characterization of the standard d‐variate normal distribution as the unique solution of an initial value problem of a partial differential equation motivated by the harmonic oscillator, which is a special case of a Schrödinger operator. We derive the asymptotic distribution of the test statistics under the hypothesis of normality as well as under fixed and contiguous alternatives. The tests are consistent against general alternatives, exhibit strong power performance for finite samples, and they are applied to a classical data set due to R.A. Fisher. The results can also be used for a neighborhood‐of‐model validation procedure.


Verlagsausgabe §
DOI: 10.5445/IR/1000125907
Veröffentlicht am 10.11.2020
Originalveröffentlichung
DOI: 10.1111/sjos.12477
Scopus
Zitationen: 7
Web of Science
Zitationen: 6
Dimensions
Zitationen: 9
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Stochastik (STOCH)
Publikationstyp Zeitschriftenaufsatz
Publikationsmonat/-jahr 06.2021
Sprache Englisch
Identifikator ISSN: 0303-6898, 1467-9469
KITopen-ID: 1000125907
Erschienen in Scandinavian journal of statistics
Verlag John Wiley and Sons
Band 48
Heft 2
Seiten 456-501
Vorab online veröffentlicht am 23.06.2020
Nachgewiesen in Web of Science
Dimensions
Scopus
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page