KIT | KIT-Bibliothek | Impressum | Datenschutz

Local wellposedness and global regularity results for biharmonic wave maps

Schmid, Tobias

Abstract (englisch):
This thesis is concerned with biharmonic wave maps, i.e. a bi-harmonic version of the wave maps equation, which is a Hamiltonian equation for a higher order energy functional and arises variationally from an elastic action functional for a manifold valued map.$\\[1pt]$
In the first part we present local and global results from energy estimates for biharmonic wave maps into compact, embedded target manifolds. This includes local wellposedness in high regularity and global regularity in subcritical dimension $n = 1, 2$. The results rely on the use of careful a priori energy estimates, compactness arguments in weak topologies and sharp Sobolev embeddings combined with energy conservation in the proof of global regularity.$\\[1pt]$
In part two, we extend these results to global regularity in dimension $ n \geq 3$ for biharmonic wave maps into spheres and initial data of small size in a scale invariant Besov norm. This follows from a small data global wellposedness and persistence of regularity result for more general systems of biharmonic wave equations with non-generic nonlinearity. In contrast to part one, the arguments in part two of the thesis rely on the analysis of bilinear frequency interactions based on Fourier restriction methods and Strichartz estimates.$\\[1pt]$
... mehr

Open Access Logo


Volltext §
DOI: 10.5445/IR/1000128147
Veröffentlicht am 18.01.2021
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Analysis (IANA)
Sonderforschungsbereich 1173 (SFB 1173)
Publikationstyp Hochschulschrift
Publikationsdatum 18.01.2021
Sprache Englisch
Identifikator KITopen-ID: 1000128147
Verlag Karlsruher Institut für Technologie (KIT)
Umfang 122 S.
Art der Arbeit Dissertation
Fakultät Fakultät für Mathematik (MATH)
Institut Institut für Analysis (IANA)
Prüfungsdatum 16.12.2020
Referent/Betreuer Prof. T. Lamm
Schlagwörter biharmonic wave equation, wave map, local wellposedness, global regularity
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page