KIT | KIT-Bibliothek | Impressum | Datenschutz

Phase-inherent linear visco-elasticity model for infinitesimal deformations in the multiphase-field context

Schwab, Felix K.; Reiter, Andreas; Herrmann, Christoph; Schneider, Daniel; Nestler, Britta

A linear visco-elasticity ansatz for the multiphase-field method is introduced in the form of a Maxwell-Wiechert model. The implementation follows the idea of solving the mechanical jump conditions in the diffuse interface regions, hence the continuous traction condition and Hadamard’s compatibility condition, respectively. This makes strains and stresses available in their phase-inherent form (e.g. $\varepsilon ^{\alpha }_{ij}$, $\varepsilon ^{\beta }_{ij}$), which conveniently allows to model material behaviour for each phase separately on the basis of these quantities. In the case of the Maxwell-Wiechert model this means the introduction of phase-inherent viscous strains. After giving details about the implementation, the results of the model presented are compared to a conventional Voigt/Taylor approach for the linear visco-elasticity model and both are evaluated against analytical and sharp-interface solutions in different simulation setups.

Verlagsausgabe §
DOI: 10.5445/IR/1000128362
Veröffentlicht am 12.01.2021
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Angewandte Materialien - Computational Materials Science (IAM-CMS)
Publikationstyp Zeitschriftenaufsatz
Publikationsjahr 2020
Sprache Englisch
Identifikator ISSN: 2213-7467
KITopen-ID: 1000128362
HGF-Programm 37.01.01 (POF III, LK 01) Fundamentals and Materials
Erschienen in Advanced modeling and simulation in engineering sciences
Verlag SpringerOpen
Band 7
Heft 1
Seiten Art.-Nr.: 47
Schlagwörter multiphase-field; linear visco-elasticity; Maxwell-Wiechert model; phase-inherent material model
Nachgewiesen in Dimensions
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page