KIT | KIT-Bibliothek | Impressum | Datenschutz

Time-Resolved Optical Emission Spectroscopy Reveals Nonequilibrium Conditions for CO$_{2}$ Splitting in Atmospheric Plasma Sustained with Ultrafast Microwave Pulsation

Soldatov, Sergey 1; Link, Guido 1; Silberer, Lucas 1; Schmedt, Clara Marie 2; Carbone, Emile; D’Isa, Federico; Jelonnek, John 1; Dittmeyer, Roland 2; Navarrete, Alexander 2
1 Institut für Hochleistungsimpuls- und Mikrowellentechnik (IHM), Karlsruher Institut für Technologie (KIT)
2 Institut für Mikroverfahrenstechnik (IMVT), Karlsruher Institut für Technologie (KIT)

Abstract (englisch):

Among the pool of Power-to-X technologies, plasmas show high potential for the efficient use of intermittent renewable energies. High efficiencies of CO$_{2}$ conversion have been reported while using microwave plasmas at vacuum conditions which are, however, not suitable for CO$_{2}$ mitigation at industrial scales. Here we show that ultrafast pulsation of microwaves allow significant improvements of energy efficiencies during CO$_{2}$ splitting at atmospheric pressure as compared to continuous wave operation of the microwave source. Moreover, by the interrogation of the plasma with time-resolved optical emission spectroscopy we can, for the first time, observe the evolution of the vibrational and rotational temperatures and define a time window where nonequilibrium can be expected at the beginning of the pulse of an atmospheric CO$_{2}$ microwave plasma. In spite of the evidence of nonequilibrium in our system, thermal mechanism appears to dominate the CO$_{2}$ dissociation. It is shown that a fine control of the energy deposition in the plasma is possible with ultrafast pulsation of the microwave energy supply.


Postprint §
DOI: 10.5445/IR/1000129112
Veröffentlicht am 23.01.2023
Originalveröffentlichung
DOI: 10.1021/acsenergylett.0c01983
Scopus
Zitationen: 19
Dimensions
Zitationen: 19
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Hochleistungsimpuls- und Mikrowellentechnik (IHM)
Institut für Mikroverfahrenstechnik (IMVT)
Publikationstyp Zeitschriftenaufsatz
Publikationsdatum 11.12.2020
Sprache Englisch
Identifikator ISSN: 2380-8195
KITopen-ID: 1000129112
HGF-Programm 34.12.01 (POF III, LK 01) Multiphasen und thermische Prozesse
Erschienen in ACS energy letters
Verlag American Chemical Society (ACS)
Band 6
Heft 1
Seiten 124-130
Projektinformation BMWK, ZF4204602PR6
Nachgewiesen in Dimensions
Scopus
Globale Ziele für nachhaltige Entwicklung Ziel 7 – Bezahlbare und saubere EnergieZiel 9 – Industrie, Innovation und InfrastrukturZiel 13 – Maßnahmen zum Klimaschutz
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page