KIT | KIT-Bibliothek | Impressum | Datenschutz

Time-Resolved Optical Emission Spectroscopy Reveals Nonequilibrium Conditions for CO$_{2}$ Splitting in Atmospheric Plasma Sustained with Ultrafast Microwave Pulsation

Soldatov, Sergey; Link, Guido; Silberer, Lucas; Schmedt, Clara Marie; Carbone, Emile; D’Isa, Federico; Jelonnek, John; Dittmeyer, Roland; Navarrete, Alexander

Abstract (englisch):
Among the pool of Power-to-X technologies, plasmas show high potential for the efficient use of intermittent renewable energies. High efficiencies of CO$_{2}$ conversion have been reported while using microwave plasmas at vacuum conditions which are, however, not suitable for CO$_{2}$ mitigation at industrial scales. Here we show that ultrafast pulsation of microwaves allow significant improvements of energy efficiencies during CO$_{2}$ splitting at atmospheric pressure as compared to continuous wave operation of the microwave source. Moreover, by the interrogation of the plasma with time-resolved optical emission spectroscopy we can, for the first time, observe the evolution of the vibrational and rotational temperatures and define a time window where nonequilibrium can be expected at the beginning of the pulse of an atmospheric CO$_{2}$ microwave plasma. In spite of the evidence of nonequilibrium in our system, thermal mechanism appears to dominate the CO$_{2}$ dissociation. It is shown that a fine control of the energy deposition in the plasma is possible with ultrafast pulsation of the microwave energy supply.

Open Access Logo


Download
Originalveröffentlichung
DOI: 10.1021/acsenergylett.0c01983
Dimensions
Zitationen: 1
Zugehörige Institution(en) am KIT Institut für Hochleistungsimpuls- und Mikrowellentechnik (IHM)
Institut für Mikroverfahrenstechnik (IMVT)
Publikationstyp Zeitschriftenaufsatz
Publikationsjahr 2020
Sprache Englisch
Identifikator ISSN: 2380-8195
KITopen-ID: 1000129112
Erschienen in ACS energy letters
Verlag American Chemical Society (ACS)
Band 6
Heft 1
Seiten 124-130
Projektinformation BMWi, ZF4204602PR6
Nachgewiesen in Scopus
Dimensions
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page