KIT | KIT-Bibliothek | Impressum | Datenschutz

Geometric construction of homology classes in Riemannian manifolds covered by products of hyperbolic planes

Zschumme, Pascal 1
1 Institut für Algebra und Geometrie (IAG), Karlsruher Institut für Technologie (KIT)

Abstract:

We study the homology of Riemannian manifolds of finite volume that are covered by an r-fold product ($\mathbb{H}$$^{2}$)$^{r}$=$\mathbb{H}$$^{2}$×⋯×$\mathbb{H}$$^{2}$ of hyperbolic planes. Using a variation of a method developed by Avramidi and Nguyen-Phan, we show that any such manifold M possesses, up to finite coverings, an arbitrarily large number of compact oriented flat totally geodesic r-dimensional submanifolds whose fundamental classes are linearly independent in the homology group H$_{r}$(M;$\mathbb{Z}$).


Verlagsausgabe §
DOI: 10.5445/IR/1000129584
Veröffentlicht am 10.02.2021
Originalveröffentlichung
DOI: 10.1007/s10711-020-00574-y
Scopus
Zitationen: 1
Web of Science
Zitationen: 3
Dimensions
Zitationen: 1
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Algebra und Geometrie (IAG)
Publikationstyp Zeitschriftenaufsatz
Publikationsjahr 2020
Sprache Englisch
Identifikator ISSN: 0046-5755, 1572-9168
KITopen-ID: 1000129584
Erschienen in Geometriae dedicata
Verlag Springer
Band 213
Seiten 191–210
Vorab online veröffentlicht am 07.12.2020
Schlagwörter Homology; Geometric cycles; Locally symmetric spaces; Arithmetic groups; Quaternion algebras; Hyperbolic plane
Nachgewiesen in Scopus
Web of Science
Dimensions
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page