KIT | KIT-Bibliothek | Impressum | Datenschutz

Channel flow with large longitudinal ribs

Castro, Ian P.; Kim, J. W.; Stroh, A. 1; Lim, H. C.
1 Institut für Strömungsmechanik (ISTM), Karlsruher Institut für Technologie (KIT)

Abstract:

We present data from direct numerical simulations of flow through channels containing large, longitudinal, surface-mounted, rectangular ribs at various spanwise spacings, which lead to secondary flows. It is shown that appropriate modifications to the classical log-law, predicated on a greater wetted surface area than in a plane channel, lead to a log-law-like region in the spanwise-averaged axial mean velocity profiles, even though local profiles may be very different. The secondary flows resulting from the presence of the ribs are examined and their effects discussed. Comparing our results with the literature we conclude that the sense of the secondary flows is largely independent of the particular rib spacing whether normalised by channel depth or rib width. The strength of the secondary flows, however, is shown to depend on the ratio of rib spacing to rib width and on Reynolds number. Topological features of the secondary flow structure are illustrated via a critical point analysis and shown to be characterised in all cases by a free stagnation point above the centre of the rib. Finally, we show that if the domain size is chosen as a ‘minimal channel’ size, rather than a size which allows adequate development of the usual outer layer flow structures, the secondary flows can be affected and this leads inevitably to differences in the near-rib flows so that for ribbed channels, unlike plain channels, it is unwise to use minimal domains to identify details of the near-wall flow.


Verlagsausgabe §
DOI: 10.5445/IR/1000131177
Veröffentlicht am 08.04.2021
Originalveröffentlichung
DOI: 10.1017/jfm.2021.110
Scopus
Zitationen: 20
Web of Science
Zitationen: 18
Dimensions
Zitationen: 25
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Strömungsmechanik (ISTM)
Publikationstyp Zeitschriftenaufsatz
Publikationsjahr 2021
Sprache Englisch
Identifikator ISSN: 0022-1120, 1469-7645, 1750-6859
KITopen-ID: 1000131177
Erschienen in Journal of Fluid Mechanics
Verlag Cambridge University Press (CUP)
Band 915
Seiten Art.-Nr.: A92
Vorab online veröffentlicht am 24.03.2021
Nachgewiesen in Web of Science
Dimensions
Scopus
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page