KIT | KIT-Bibliothek | Impressum | Datenschutz

On smoothing estimates in modulation spaces and the NLS with slowly decaying initial data

Schippa, Robert

Abstract:

We show new local $L^p$-smoothing estimates for the Schrödinger equation with initial data in modulation spaces via decoupling inequalities. Furthermore, we probe necessary conditions by Knapp-type examples for space-time estimates of solutions with initial data in modulation and $L^p$-spaces. The examples show sharpness of the smoothing estimates up to the endpoint regularity in a certain range. Moreover, the examples rule out global Strichartz estimates for initial data in $L^p(\mathbb{R}^d)$ for $d \ge 1$ and $p>2$, which was previously known for $d \ge 2$. The estimates are applied to show new local and global well-posedness results for the cubic nonlinear Schrödinger equation on the line. Lastly, we show $\ell^2$ -decoupling inequalities for variable-coefficient versions of elliptic and non-elliptic Schrödinger phase functions.


Volltext §
DOI: 10.5445/IR/1000132421
Veröffentlicht am 06.05.2021
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Analysis (IANA)
Sonderforschungsbereich 1173 (SFB 1173)
Publikationstyp Forschungsbericht/Preprint
Publikationsmonat/-jahr 05.2021
Sprache Englisch
Identifikator ISSN: 2365-662X
KITopen-ID: 1000132421
Verlag Karlsruher Institut für Technologie (KIT)
Umfang 31 S.
Serie CRC 1173 Preprint ; 2021/19
Projektinformation SFB 1173/2 (DFG, DFG KOORD, SFB 1173/2 2019)
Externe Relationen Siehe auch
Schlagwörter smoothing estimates, Strichartz estimates, modulation spaces, nonlinear Schrödinger equation
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page