KIT | KIT-Bibliothek | Impressum | Datenschutz

A Sobolev-Type Inequality for the Curl Operator and Ground States for the Curl–Curl Equation with Critical Sobolev Exponent

Mederski, Jarosław 1; Szulkin, Andrzej
1 Karlsruher Institut für Technologie (KIT)

Abstract:

Let Ω⊂R$^{3}$ be a Lipschitz domain and let S$_{curl}$(Ω) be the largest constant such that

∫$_{R^{3}}$|∇×u|$^{2}$dx≥S$_{curl}$(Ω) infw ∈W$^{6}$$_{0}$ (curl;R$^{3}$)∇×w=0(∫$_{R^{3}}$|u+w|$^{6}$dx)$^{1/3}$
for any u in W$^{6}$$_{0}$(curl;Ω)⊂W$^{6}$$_{0}$(curl;R$^{3}$), where W$^{6}$$_{0}$(curl;Ω) is the closure of C$^{∞}_{0}$(Ω,R$^{3}$) in {u∈L$^{6}$(Ω,R$^{3}$):∇×u∈L$^{2}$(Ω,R$^{3}$)} with respect to the norm (|u|$^{2}_{6}$+|∇×u|$^{2}_{2}$)$^{1/2}$. We show that S$_{curl}$(Ω) is strictly larger than the classical Sobolev constant S in R$^{3}$. Moreover, S$_{curl}$(Ω) is independent of Ω and is attained by a ground state solution to the curl–curl problem

∇×(∇×u)=|u|$^{4}$u
if Ω=R$^{3}$. With the aid of these results we also investigate ground states of the Brezis–Nirenberg-type problem for the curl–curl operator in a bounded domain Ω

∇×(∇×u)+λu=|u|$^{4}$u in Ω,
with the so-called metallic boundary condition ν×u=0 on ∂Ω, where ν is the exterior normal to ∂Ω.


Verlagsausgabe §
DOI: 10.5445/IR/1000134295
Veröffentlicht am 26.06.2021
Originalveröffentlichung
DOI: 10.1007/s00205-021-01684-x
Scopus
Zitationen: 8
Web of Science
Zitationen: 7
Dimensions
Zitationen: 7
Cover der Publikation
Zugehörige Institution(en) am KIT Fakultät für Mathematik (MATH)
Publikationstyp Zeitschriftenaufsatz
Publikationsjahr 2021
Sprache Englisch
Identifikator ISSN: 0003-9527, 1432-0673
KITopen-ID: 1000134295
Erschienen in Archive for Rational Mechanics and Analysis
Verlag Springer
Band 241
Seiten 1815–1842
Vorab online veröffentlicht am 10.06.2021
Nachgewiesen in Scopus
Web of Science
Dimensions
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page