KIT | KIT-Bibliothek | Impressum | Datenschutz

Data-Driven Copy-Paste Imputation for Energy Time Series

Weber, Moritz ORCID iD icon 1; Turowski, Marian ORCID iD icon 1; Çakmak, Hueseyin K. ORCID iD icon 1; Mikut, Ralf ORCID iD icon 1; Kühnapfel, Uwe 1; Hagenmeyer, Veit ORCID iD icon 1
1 Karlsruher Institut für Technologie (KIT)

Abstract:

A cornerstone of the worldwide transition to smart grids are smart meters. Smart meters typically collect and provide energy time series that are vital for various applications, such as grid simulations, fault-detection, load forecasting, load analysis, and load management. Unfortunately, these time series are often characterized by missing values that must be handled before the data can be used. A common approach to handle missing values in time series is imputation. However, existing imputation methods are designed for power time series and do not take into account the total energy of gaps, resulting in jumps or constant shifts when imputing energy time series. In order to overcome these issues, the present paper introduces the new Copy-Paste Imputation (CPI) method for energy time series. The CPI method copies data blocks with similar characteristics and pastes them into gaps of the time series while preserving the total energy of each gap. The new method is evaluated on a real-world dataset that contains six shares of artificially inserted missing values between 1 and 30%. It outperforms the three benchmark imputation methods selected for comparison. ... mehr

Zugehörige Institution(en) am KIT Institut für Automation und angewandte Informatik (IAI)
Publikationstyp Zeitschriftenaufsatz
Publikationsjahr 2021
Sprache Englisch
Identifikator ISSN: 1949-3053, 1949-3061
KITopen-ID: 1000136166
HGF-Programm 37.12.02 (POF IV, LK 01) Design,Operation & Digitalization of the Future Energy Grids
Erschienen in IEEE transactions on smart grid
Verlag Institute of Electrical and Electronics Engineers (IEEE)
Band 12
Heft 6
Seiten 5409-5419
Vorab online veröffentlicht am 02.08.2021
Nachgewiesen in Dimensions
Scopus
Web of Science
Relationen in KITopen

Verlagsausgabe §
DOI: 10.5445/IR/1000136166
Veröffentlicht am 28.10.2021
Originalveröffentlichung
DOI: 10.1109/TSG.2021.3101831
Scopus
Zitationen: 24
Web of Science
Zitationen: 20
Dimensions
Zitationen: 24
Seitenaufrufe: 259
seit 04.08.2021
Downloads: 170
seit 29.10.2021
Cover der Publikation
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page