KIT | KIT-Bibliothek | Impressum | Datenschutz

Data-Driven Methods for Managing Anomalies in Energy Time Series

Turowski, Marian ORCID iD icon 1
1 Institut für Automation und angewandte Informatik (IAI), Karlsruher Institut für Technologie (KIT)

Abstract (englisch):

With the progressing implementation of the smart grid, more and more smart meters record power or energy consumption and generation as time series. The increasing availability of these recorded energy time series enables the goal of the automated operation of smart grid applications such as load analysis, load forecasting, and load management. However, to perform well, these applications usually require clean data that describes the typical behavior of the underlying system well. Unfortunately, recorded energy time series are usually not clean but contain anomalies, i.e., patterns that deviate from what is considered normal. Since anomalies thus potentially contain data points or patterns that represent false or misleading information, they can be problematic for any analysis of this data performed by smart grid applications.

Therefore, the present thesis proposes data-driven methods for managing anomalies in energy time series. It introduces an anomaly management whose characteristics correspond to steps in a sequential pipeline, namely anomaly detection, anomaly compensation, and a subsequent application. Using forecasting as an exemplary subsequent application and real-world data with inserted synthetic and labeled anomalies, this thesis answers four research questions along that pipeline for managing anomalies in energy time series.
... mehr


Volltext §
DOI: 10.5445/IR/1000154434
Veröffentlicht am 06.07.2023
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Automation und angewandte Informatik (IAI)
Publikationstyp Hochschulschrift
Publikationsdatum 06.07.2023
Sprache Englisch
Identifikator KITopen-ID: 1000154434
HGF-Programm 37.12.01 (POF IV, LK 01) Digitalization & System Technology for Flexibility Solutions
Verlag Karlsruher Institut für Technologie (KIT)
Umfang xxi, 169 S.
Art der Arbeit Dissertation
Fakultät Fakultät für Informatik (INFORMATIK)
Institut Institut für Automation und angewandte Informatik (IAI)
Prüfungsdatum 28.11.2022
Schlagwörter anomalies, anomaly management, energy time series
Relationen in KITopen
Referent/Betreuer Hagenmeyer, Veit
González Ordiano, Jorge Ángel
Mikut, Ralf
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page