KIT | KIT-Bibliothek | Impressum | Datenschutz

Aperiodic order and spherical diffraction, II: translation bounded measures on homogeneous spaces

Björklund, Michael; Hartnick, Tobias 1; Pogorzelski, Felix
1 Institut für Algebra und Geometrie (IAG), Karlsruher Institut für Technologie (KIT)

Abstract:

We study the auto-correlation measures of invariant random point processes in the hyperbolic plane which arise from various classes of aperiodic Delone sets. More generally, we study auto-correlation measures for large classes of Delone sets in (and even translation bounded measures on) arbitrary locally compact homogeneous metric spaces. We then specialize to the case of weighted model sets, in which we are able to derive more concrete formulas for the auto-correlation. In the case of Riemannian symmetric spaces we also explain how the auto-correlation of a weighted model set in a Riemannian symmetric space can be identified with a (typically non-tempered) positive-definite distribution on Rn. This paves the way for a diffraction theory for such model sets, which will be discussed in the sequel to the present article.


Verlagsausgabe §
DOI: 10.5445/IR/1000136395
Veröffentlicht am 16.08.2021
Originalveröffentlichung
DOI: 10.1007/s00209-021-02817-4
Scopus
Zitationen: 5
Web of Science
Zitationen: 5
Dimensions
Zitationen: 6
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Algebra und Geometrie (IAG)
Publikationstyp Zeitschriftenaufsatz
Publikationsjahr 2022
Sprache Englisch
Identifikator ISSN: 0025-5874, 1432-1823
KITopen-ID: 1000136395
Erschienen in Mathematische Zeitschrift
Verlag Springer
Band 300
Seiten 1157–1201
Vorab online veröffentlicht am 31.07.2021
Nachgewiesen in Dimensions
Scopus
Web of Science
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page