KIT | KIT-Bibliothek | Impressum | Datenschutz

Exploring the Robustness of the Natural Language Inference Capabilties of T5

Grötzinger, Dennis

Abstract (englisch):

Large language models like T5 perform excellently on various NLI benchmarks. However, it has been shown that even small changes in the structure of these tasks can significantly reduce accuracy. I build upon this insight and explore how robust the NLI skills of T5 are in three scenarios. First, I show that T5 is robust to some variations in the MNLI pattern, while others degenerate performance significantly. Second, I observe that some other patterns that T5 was trained on can be substituted for the MNLI pattern and still achieve good results. Third, I demonstrate that the MNLI pattern translate well to other NLI datasets, even improving accuracy by 13% in the case of RTE. All things considered, I conclude that the robustness of the NLI skills of T5 really depend on which alterations are applied.

Zugehörige Institution(en) am KIT Institut für Informationssicherheit und Verlässlichkeit (KASTEL)
Publikationstyp Hochschulschrift
Publikationsdatum 21.06.2021
Sprache Englisch
Identifikator KITopen-ID: 1000139678
Art der Arbeit Abschlussarbeit - Bachelor
Prüfungsdaten 21.06.2021
Referent/Betreuer Keim, J.

Volltext §
DOI: 10.5445/IR/1000139678
Veröffentlicht am 10.11.2021
Seitenaufrufe: 161
seit 09.11.2021
Downloads: 327
seit 17.11.2021
Cover der Publikation
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page