KIT | KIT-Bibliothek | Impressum | Datenschutz

Level-Planar Drawings with Few Slopes

Brückner, Guido; Krisam, Nadine; Mchedlidze, Tamara

Abstract:

We introduce and study level-planar straight-line drawings with a fixed number 𝜆 of slopes. For proper level graphs (all edges connect vertices of adjacent levels), we give an 𝑂(𝑛 log$^{2}$ 𝑛/ log log 𝑛)-time algorithm that either finds such a drawing or determines that no such drawing exists. Moreover, we consider the partial drawing extension problem, where we seek to extend an immutable drawing of a subgraph to a drawing of the whole graph, and the simultaneous drawing problem, which asks about the existence of drawings of two graphs whose restrictions to their shared subgraph coincide. We present 𝑂(𝑛$^{4/3}$ log 𝑛)-time and 𝑂(𝜆𝑛$^{10/3}$ log 𝑛)-time algorithms for these respective problems on proper level-planar graphs. We complement these positive results by showing that testing whether non-proper level graphs admit level-planar drawings with 𝜆 slopes is NP-hard even in restricted cases.


Verlagsausgabe §
DOI: 10.5445/IR/1000140541
Veröffentlicht am 01.12.2021
Originalveröffentlichung
DOI: 10.1007/s00453-021-00884-x
Scopus
Zitationen: 1
Dimensions
Zitationen: 1
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Theoretische Informatik (ITI)
Publikationstyp Zeitschriftenaufsatz
Publikationsjahr 2022
Sprache Englisch
Identifikator ISSN: 0178-4617, 1432-0541
KITopen-ID: 1000140541
Erschienen in Algorithmica
Verlag Springer
Band 84
Seiten 176–196
Vorab online veröffentlicht am 19.11.2021
Nachgewiesen in Scopus
Web of Science
Dimensions
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page