KIT | KIT-Bibliothek | Impressum | Datenschutz

Accelerated Computation of a High Dimensional Kolmogorov-Smirnov Distance

Haide, Isabel; Hainje, Connor; Hagen, Alexander; Kahn, James ORCID iD icon; Jackson, Shane; Strube, Jan


Surrogate modeling and data-model convergence are important in any field utilizing probabilistic modeling, including High Energy Physics and Nuclear Physics. However, demonstrating that the model produces samples from the same underlying distribution as the true source can be problematic if the data is many-dimensional. The 1-D and multi-dimensional Kolmogorov-Smirnov test (ddKS) is a statistically powerful nonparametric test which can be implemented as a one- or two-sample test. We have developed three algorithms, one exact and two approximate, for the multi-dimensional Kolmogorov-Smirnov test proposed by Fasano. We apply ddKS to the comparison of photon distributions in the Belle II time-of-propagation detector using the collaboration’s Geant4 simulation and our own neural network surrogate model. Additionally, we have derived an analytic form for the statistical significance of ddKS. Our approximations reduce the input time complexity from quadratic to log-linear (vdKS) and reduce the dimensional time complexity from exponential to linear (rdKS). The approximation methods maintain the statistical power of the exact method requiring tens of data points to indicate differences between most sampled distributions.

Volltext §
DOI: 10.5445/IR/1000140621
Veröffentlicht am 02.12.2021
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Experimentelle Teilchenphysik (ETP)
Steinbuch Centre for Computing (SCC)
Universität Karlsruhe (TH) – Zentrale Einrichtungen (Zentrale Einrichtungen)
Publikationstyp Poster
Publikationsdatum 01.12.2021
Sprache Englisch
Identifikator KITopen-ID: 1000140621
HGF-Programm 46.21.04 (POF IV, LK 01) HAICU
Veranstaltung 20th International Workshop on Advanced Computing and Analysis Techniques in Physics Research (ACAT 2021), Daejeon, Südkorea, 29.11.2021 – 03.12.2021
Relationen in KITopen
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page