Abstract:
Gedruckte Elektronik ermöglicht die Anfertigung elektrischer Bauteile und Systeme auf großflächigen, flexiblen Trägersubstraten. Des Weiteren wird durch berührungsfreie Druckverfahren, wie dem Tintenstrahldruck, eine flexible, dezentrale Fertigung elektronischer Bauteile und Systeme ermöglicht. Dies erlaubt unter anderem das Split-Manufacturing sicherheitskritischer elektronischer Komponenten, sowie eine größtmögliche Designfreiheit im Sinne von freien Formfaktoren und nicht standardisierter Strukturen mit unterschiedlichsten Abmessungen im Bereich von wenigen Mikrometern bis hin zu mehreren Millimetern.
... mehr
Durch die genannten technologischen Aspekte bildet die gedruckte Elektronik einen interessanten Gegenpol zur klassischen hochintegrierbaren, miniaturisierten Silizium-Elektronik. Durch eine komplementäre Nutzung der Vorteile beider Technologien entstehen neuartige Synergien und Applikationen in Form von hybriden Systemen. Während hybride Lösungen, basierend auf passiven gedruckten Bauteilen und elektrisch leitfähigen Komponenten bereits kommerziell erhältlich sind, bleiben komplexe Systeme, die sowohl passive, als auch aktive, gedruckte elektronische Bauteile nutzen, noch selten. Um ganzheitliche, gedruckte sowie hybride elektronische Systeme zu ermöglichen, sind diverse Bausteine erforderlich. Hierzu zählen leichtgewichtige Möglichkeiten zur Datenspeicherung sowie Komponenten, die sich selbst mit Energie versorgende Systeme ermöglichen und insbesondere Schaltungen zur sicheren, eindeutigen Identifizierbarkeit ganzheitlicher, gedruckter Systeme für das Internet der Dinge.
Die hier vorliegende Arbeit befasst sich mit, durch Tintenstrahldruck hergestellten, elektronischen Bauteilen, Schaltkreisen, sowie hybriden Systemen. Es wurden Lösungen zu aktuellen wissenschaftlichen Fragestellungen in den Bereichen effizienter gedruckter Speicherbausteine, nachhaltiger elektronischer Systeme, sowie der hardwarebasierten Sicherheit, auf Basis gedruckter Elektronik, erforscht und entwickelt.
Zur Datenspeicherung für gedruckte Systeme wurde ein, mittels Tintenstrahldruck hergestellter, Memristor entwickelt. Das Bauteil wurde vollumfänglich im Hinblick auf die Speicherung digitaler Information, charakterisiert. Die erzielten Ergebnisse zeigen, dass der Memristor als nichtflüchtiges Speicherelement genutzt werden kann.
Um ganzheitliche, nachhaltige elektronische Systeme zu ermöglichen wurde ein gedruckter Vollweggleichrichter entwickelt.
Durch die Verwendung von Electrolyte-Gated Transistoren mit einer Schwellspannung von nahe-null Volt, ist die Schaltung in der Lage kleine Wechselspannungen, wie sie von piezoelektrischen Energy Harvestern erzeugt werden, gleichzurichten. Der, mittels Tintenstrahldruck hergestellte, Vollweggleichrichter wurde elektrisch vollumfänglich charakterisiert.
Zur Erzeugung einzigartiger Identifikationsmerkmale wurden zwei Implementierungenmöglichkeiten physikalisch unklonbarer Funktionen entwickelt. Dieser Ansatz nutzt die unvorhersehbare, intrinsische Variation gedruckter Bauteile als hardwarebasiertes Sicherheitsfeature. Eine untersuchte Implementierung basiert auf einer Crossbar-Anordnung integrierbarer Electrolyte-Gated Transistoren. Die zweite Implementierungsvariante nutzt Inverterstrukturen, ebenfalls auf Basis von Electrolyte-Gated Transistoren, zur Erzeugung der einzigartigen Systemantworten. Beide Varianten wurden sowohl mit Hilfe von elektrischen Simulationen, als auch experimentell untersucht.
Die Inverter-basierte, intrinsische Variationsquelle wurde des Weiteren vollständig in ein Silizium-basiertes Gesamtsystem integriert und hinsichtlich ihrer Sicherheitsmetriken untersucht. Das Gesamtsystem bildet ein hybrides System, bestehend aus gedruckten Bauteilen sowie klassischer Silizium-Elektronik, zur Erzeugung einzigartiger Systemantworten.
Abstract (englisch):
Printed electronics, due to its manufacturability using printing technology, allows for fabrication on large areas and the usage of flexible substrates and thus enables novel applications. Non-impact printing technology, such as inkjet-printing, permits for flexible, decentralized manufacturing of electronic devices and systems. This further facilitates split-manufacturing in security-critical electrical components, as well as a maximum in design flexibility in terms of free form factors and non-standardized structures with different geometrical sizes, reaching from a few micrometers up to several millimeters.
... mehr
Based on the technological benefits printed electronics offers, it provides an interesting counterpart to classical silicon-based electronics, which is usually densely integrated on miniaturized, rigid areas. By utilizing both technologies in a complementary manner, novel systems in the form of hybrid systems can be enabled. Whilst hybrid systems, incorporating passive printed components and electrically conductive wiring concepts, are already commercialized, complex printed systems, which also utilize active components remain rare. To enable more complex (hybrid) systems, various building blocks are required. This includes possibilities for lightweight, printed data storage, the capability to provide sustainable, self-powered printed components and especially circuits for secure, unique identification for holistic printed systems, deployed in the internet of things.
The presented thesis focuses on inkjet-printed electronic devices, circuits and hybrid systems. It investigates solutions for current scientific questions in the area of efficient data storage, sustainable electronics and hardware-based security in printed electronics.
For data storage, an inkjet-printed memristor is developed. The device is fully electrically evaluated with a focus on its data storage capabilities. Furthermore the printed device is of special interest due to its easy manufacturability and integration capabilities. The experimental analysis reveals that the developed memristor is highly suitable as lightweight non-volatile memory device.
In order to enable sustainable electronic systems, an inkjet-printed full-wave rectifier based on near-zero threshold voltage electrolyte-gated transistors is developed and fully electrically characterized. The circuit is capable for small alternating voltage rectification of low-frequency vibration energy harvesters in the sub-volt region. This provides an important building block in enabling sustainable, self-powered electronic systems. The inkjet-printed full-wave rectifier is evaluated by electrical simulation and experimentally.
To tackle hardware-based security for printed electronics, two implementations for inkjet-printed physically unclonable functions are developed and presented. For unique identification, intrinsic variation in active printed devices are exploited. One implementation is based on a crossbar architecture, incorporating integrable electrolyte-gated transistor cells. The second implementation, the so-called differential circuit physically unclonable function, is based on inverter structures, which provide the basis for unique response generation. Both physically unclonable functions are evaluated using an electrical simulation-based approach and experimentally. The differential circuit approach is furthermore fully integrated within a silicon-based electronic platform environment and serves as intrinsic variation source in a hybrid system. The hybrid system physically unclonable function is fully verified regarding performance metrics and is capable to generate highly unique responses for secure identification.