KIT | KIT-Bibliothek | Impressum | Datenschutz

Seismic imaging with generalized Radon transforms: stability of the Bolker condition

Kunstmann, Peer Christian; Quinto, Eric Todd; Rieder, Andreas ORCID iD icon

Abstract:

Generalized Radon transforms are Fourier integral operators which are used, for instance, as imaging models in geophysical exploration. They appear naturally when linearizing about a known background compression wave speed. In this work we first consider a linearly increasing background velocity in two spatial dimensions. We verify the Bolker condition for the zero-offset scanning geometry and provide meaningful arguments for it to hold even if the common offset is positive. Based on this result we suggest an imaging operator for which we calculate the top order symbol in the zero-offset case to study how it maps singularities. Second, to support the usage of background models obtained from linear regression we present a stability result for the Bolker condition under perturbations of the background velocity and of the offset.


Volltext §
DOI: 10.5445/IR/1000141638
Veröffentlicht am 05.01.2022
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Analysis (IANA)
Institut für Angewandte und Numerische Mathematik (IANM)
Sonderforschungsbereich 1173 (SFB 1173)
Publikationstyp Forschungsbericht/Preprint
Publikationsmonat/-jahr 01.2022
Sprache Englisch
Identifikator ISSN: 2365-662X
KITopen-ID: 1000141638
Verlag Karlsruher Institut für Technologie (KIT)
Umfang 35 S.
Serie CRC 1173 Preprint ; 2022/3
Projektinformation SFB 1173/2 (DFG, DFG KOORD, SFB 1173/2 2019)
Schlagwörter generalized Radon transforms, Fourier integral operators, microlocal analysis, seismic imaging
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page