KIT | KIT-Bibliothek | Impressum | Datenschutz

Automated Annotator Variability Inspection for Biomedical Image Segmentation

Schilling, Marcel P. ORCID iD icon; Scherr, Tim ORCID iD icon; Munke, Friedrich R. ORCID iD icon; Neumann, Oliver; Schutera, Mark; Mikut, Ralf ORCID iD icon; Reischl, Markus ORCID iD icon

Abstract:

Supervised deep learning approaches for automated diagnosis support require datasets annotated by experts. Intra-annotator variability of a single annotator and inter-annotator variability between annotators can affect the quality of the diagnosis support. As medical experts will always differ in annotation details, quantitative studies concerning the annotation quality are of particular interest. A consistent and noise-free annotation of large-scale datasets by, for example, dermatologists or pathologists is a current challenge. Hence, methods are needed to automatically inspect annotations in datasets. In this paper, we categorize annotation noise in image segmentation tasks, present methods to simulate annotation noise, and examine the impact on the segmentation quality. Two novel automated methods to identify intra-annotator and inter-annotator inconsistencies based on uncertainty-aware deep neural networks are proposed. We demonstrate the benefits of our automated inspection methods such as focused re-inspection of noisy annotations or the detection of generally different annotation styles using the biomedical ISIC 2017 Melanoma image segmentation dataset.


Verlagsausgabe §
DOI: 10.5445/IR/1000141803
Veröffentlicht am 12.01.2022
Originalveröffentlichung
DOI: 10.1109/ACCESS.2022.3140378
Scopus
Zitationen: 12
Web of Science
Zitationen: 8
Dimensions
Zitationen: 12
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Automation und angewandte Informatik (IAI)
Publikationstyp Zeitschriftenaufsatz
Publikationsjahr 2022
Sprache Englisch
Identifikator ISSN: 2169-3536
KITopen-ID: 1000141803
HGF-Programm 47.14.02 (POF IV, LK 01) Information Storage and Processing in the Cell Nucleus
Erschienen in IEEE access
Verlag Institute of Electrical and Electronics Engineers (IEEE)
Band 10
Seiten 2753–2765
Bemerkung zur Veröffentlichung Gefördert durch den KIT-Publikationsfonds
Vorab online veröffentlicht am 04.01.2022
Schlagwörter Annotations, Image segmentation, Task analysis, Noise measurement, Uncertainty, Inspection, Training, Artificial neural networks, Automation, Machine learning, Segmentation, Image processing
Nachgewiesen in Web of Science
Dimensions
Scopus
Globale Ziele für nachhaltige Entwicklung Ziel 3 – Gesundheit und Wohlergehen
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page