KIT | KIT-Bibliothek | Impressum | Datenschutz

Approximation of high-frequency wave propagation in dispersive media

Baumstark, Julian; Jahnke, Tobias

Abstract:

We consider semilinear hyperbolic systems with a trilinear nonlinearity. Both the differential equation and the initial data contain the inverse of a small parameter $\varepsilon$, and typical solutions oscillate with frequency proportional to $1/\varepsilon$ in time and space. Moreover, solutions have to be computed on time intervals of length $1/\varepsilon$ in order to study nonlinear and diffractive effects. As a consequence, direct numerical simulations are extremely costly or even impossible. We propose an analytical approximation and prove that it approximates the exact solution up to an error of $\mathcal{O}(\varepsilon^2)$ on time intervals of length $1/\varepsilon$. This is a significant improvement over the classical nonlinear Schrödinger approximation, which only yields an accuracy of $\mathcal{O}(\varepsilon)$.


Volltext §
DOI: 10.5445/IR/1000142639
Veröffentlicht am 03.02.2022
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Angewandte und Numerische Mathematik (IANM)
Sonderforschungsbereich 1173 (SFB 1173)
Publikationstyp Forschungsbericht/Preprint
Publikationsmonat/-jahr 02.2022
Sprache Englisch
Identifikator ISSN: 2365-662X
KITopen-ID: 1000142639
Verlag Karlsruher Institut für Technologie (KIT)
Umfang 32 S.
Serie CRC 1173 Preprint ; 2022/9
Projektinformation SFB 1173/2 (DFG, DFG KOORD, SFB 1173/2 2019)
Externe Relationen Siehe auch
Schlagwörter high-frequency wave propagation, semilinear wave equation, Maxwell–Lorentz system, diffractive geometric optics, slowly varying envelope approximation, error bounds
Relationen in KITopen
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page