KIT | KIT-Bibliothek | Impressum | Datenschutz

Optimisation of manufacturing process parameters for variable component geometries using reinforcement learning

Zimmerling, Clemens ORCID iD icon; Poppe, Christian ORCID iD icon; Stein, Oliver ORCID iD icon; Kärger, Luise ORCID iD icon

Abstract:

Tailoring manufacturing processes to optimum part quality often requires numerous resource-intensive trial experiments in practice. Physics-based process simulations in combination with general-purpose optimisation algorithms allow for an a priori process optimisation and help concentrate costly trials on the most promising variants. However, considerable computation times are a significant barrier, especially for iterative optimisation. Surrogate-based optimisation often helps reduce the computational effort but surrogate models are typically case-specific and cannot adapt to different manufacturing situations. Consequently, even minor problem variations e.g. geometry adaptions invalidate the surrogate and require resampling of data and retraining of the surrogate. Reinforcement Learning aims at inferring optimal actions in variable situations. In this work, it is used to train a neural network to estimate optimal process parameters (“actions”) for variable component geometries (“situations”). The use case is fabric forming in which pressure pads are positioned to optimise the material intake. After training, the network is found to give meaningful parameter estimations even for new geometries not considered during training. ... mehr


Verlagsausgabe §
DOI: 10.5445/IR/1000142837
Veröffentlicht am 10.02.2022
Originalveröffentlichung
DOI: 10.1016/j.matdes.2022.110423
Scopus
Zitationen: 29
Web of Science
Zitationen: 18
Dimensions
Zitationen: 26
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Fahrzeugsystemtechnik (FAST)
Institut für Operations Research (IOR)
Publikationstyp Zeitschriftenaufsatz
Publikationsjahr 2022
Sprache Englisch
Identifikator ISSN: 0264-1275, 0141-5530, 0261-3069, 1873-4197, 1878-2876
KITopen-ID: 1000142837
Erschienen in Materials and Design
Verlag Elsevier
Band 214
Seiten Art.-Nr.: 110423
Nachgewiesen in Dimensions
Web of Science
Scopus
Relationen in KITopen
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page