KIT | KIT-Bibliothek | Impressum | Datenschutz

Receiver operating characteristic (ROC) curves: equivalences, beta model, and minimum distance estimation

Gneiting, Tilmann ORCID iD icon 1; Vogel, Peter
1 Karlsruher Institut für Technologie (KIT)

Abstract:

Receiver operating characteristic (ROC) curves are used ubiquitously to evaluate scores, features, covariates or markers as potential predictors in binary problems. We characterize ROC curves from a probabilistic perspective and establish an equivalence between ROC curves and cumulative distribution functions (CDFs). These results support a subtle shift of paradigms in the statistical modelling of ROC curves, which we view as curve fitting. We propose the flexible two-parameter beta family for fitting CDFs to empirical ROC curves and derive the large sample distribution of minimum distance estimators in general parametric settings. In a range of empirical examples the beta family fits better than the classical binormal model, particularly under the vital constraint of the fitted curve being concave.

Zugehörige Institution(en) am KIT Fakultät für Mathematik (MATH)
Publikationstyp Zeitschriftenaufsatz
Publikationsjahr 2022
Sprache Englisch
Identifikator ISSN: 0885-6125, 1573-0565
KITopen-ID: 1000143005
Erschienen in Machine learning
Verlag Springer-Verlag
Band 111
Seiten 2147–2159
Vorab online veröffentlicht am 17.12.2021
Schlagwörter Binary prediction, Classification, Evaluation of predictive potential
Nachgewiesen in Scopus
Dimensions
Web of Science
OpenAlex

Verlagsausgabe §
DOI: 10.5445/IR/1000143005
Veröffentlicht am 13.02.2022
Originalveröffentlichung
DOI: 10.1007/s10994-021-06115-2
Scopus
Zitationen: 18
Web of Science
Zitationen: 18
Dimensions
Zitationen: 25
Seitenaufrufe: 73
seit 17.02.2022
Downloads: 74
seit 19.02.2022
Cover der Publikation
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page