KIT | KIT-Bibliothek | Impressum | Datenschutz

Error analysis of a fully discrete discontinuous Galerkin alternating direction implicit discretization of a class of linear wave-type problems

Hochbruck, Marlis 1; Köhler, Jonas 1
1 Karlsruher Institut für Technologie (KIT)

Abstract:

This paper is concerned with the rigorous error analysis of a fully discrete scheme obtained by using a central fluxes discontinuous Galerkin (dG) method in space and the Peaceman–Rachford splitting scheme in time. We apply the scheme to a general class of wave-type problems and show that the resulting approximations as well as discrete derivatives thereof satisfy error bounds of the order of the polynomial degree used in the dG discretization and order two in time. In particular, the class of problems considered includes, e.g., the advection equation, the acoustic wave equation, and the Maxwell equations for which a very efficient implementation is possible via an alternating direction implicit splitting.


Verlagsausgabe §
DOI: 10.5445/IR/1000143115
Veröffentlicht am 16.02.2022
Originalveröffentlichung
DOI: 10.1007/s00211-021-01262-z
Scopus
Zitationen: 2
Web of Science
Zitationen: 2
Dimensions
Zitationen: 3
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Angewandte und Numerische Mathematik (IANM)
Sonderforschungsbereich 1173 (SFB 1173)
Publikationstyp Zeitschriftenaufsatz
Publikationsjahr 2022
Sprache Englisch
Identifikator ISSN: 0029-599X, 0945-3245
KITopen-ID: 1000143115
Erschienen in Numerische Mathematik
Verlag Springer
Band 150
Heft 3
Seiten 893–927
Vorab online veröffentlicht am 31.01.2022
Nachgewiesen in Dimensions
Scopus
Web of Science
Relationen in KITopen
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page