KIT | KIT-Bibliothek | Impressum | Datenschutz

Automation and Optimization of Working Speed and Depth in Agricultural Soil Tillage with a Model Predictive Control based on Machine Learning

Becker, Simon; Kazenwadel, Benjamin ORCID iD icon; Geimer, Marcus ORCID iD icon

Abstract (englisch):

While facing environmental challenges due to climate change, the need for optimization and automation of agricultural tasks is increasing. Furthermore, costs and the lack of qualified personnel require efficient and highly automated control systems for agricultural machinery.
Therefore, this work addresses these challenges by optimizing the working speed of a tractor and soil tillage implement combination to maintain efficient operating points during high power demands.
A system was developed that predicts a suitable working speed based on a draft force and traction model in combination with the usage of a neural network for fuel rate prediction. The machine operator is able to customize optimization parameters such as fuel efficiency, performance or total costs depending on the individual needs and situation. These parameters lead to a reward function to value the machines state. Based on these objectives the network is able to predict the system state for various potential target speeds and evaluate their optimization parameters to select the most promising target speed. This target speed gets received by the tractor and leads to a new machine state.
... mehr

Zugehörige Institution(en) am KIT Institut für Fahrzeugsystemtechnik (FAST)
Publikationstyp Proceedingsbeitrag
Publikationsdatum 25.02.2022
Sprache Englisch
Identifikator ISBN: 978-3-18-092395-6
ISSN: 0083-5560
KITopen-ID: 1000143315
Erschienen in LAND.TECHNIK 2022 The Forum for Agricultural Engineering Innovations
Veranstaltung 79. International Conference on Agricultural Engineering LAND.TECHNIK (2022), Hannover, Deutschland, 25.02.2022 – 26.02.2022
Verlag VDI Verlag
Seiten 55 - 64
Serie VDI-Berichte ; 2395
Schlagwörter Machine Learning, Automation, Agricultural Soil Tillage, Model Predictive Control
Nachgewiesen in Scopus
OpenAlex
Dimensions
Globale Ziele für nachhaltige Entwicklung Ziel 2 – Kein HungerZiel 13 – Maßnahmen zum Klimaschutz

Preprint §
DOI: 10.5445/IR/1000143315
Veröffentlicht am 11.03.2022
Originalveröffentlichung
DOI: 10.51202/9783181023952-55
Scopus
Zitationen: 3
Dimensions
Zitationen: 2
Seitenaufrufe: 326
seit 25.02.2022
Downloads: 271
seit 13.03.2022
Cover der Publikation
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page