KIT | KIT-Bibliothek | Impressum | Datenschutz

Strichartz estimates for equations with structured Lipschitz coefficients

Frey, Dorothee ORCID iD icon; Schippa, Robert

Abstract:

Sharp Strichartz estimates are proved for Schrödinger and wave equations with Lipschitz coefficients satisfying additional structural assumptions. We use Phillips functional calculus as a substitute for Fourier inversion, which shows how dispersive properties are inherited from the constant coefficient case. Global Strichartz estimates follow provided that the derivatives of the coefficients are integrable. The estimates extend to structured coefficients of bounded variations. As applications we derive Strichartz estimates with additional derivative loss for wave equations with Hölder-continuous coefficients and solve nonlinear Schrödinger equations. Finally, we record spectral multiplier estimates, which follow from the Strichartz estimates by well-known means.


Volltext §
DOI: 10.5445/IR/1000143385
Veröffentlicht am 03.03.2022
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Analysis (IANA)
Sonderforschungsbereich 1173 (SFB 1173)
Publikationstyp Forschungsbericht/Preprint
Publikationsmonat/-jahr 02.2022
Sprache Englisch
Identifikator ISSN: 2365-662X
KITopen-ID: 1000143385
Verlag Karlsruher Institut für Technologie (KIT)
Umfang 27 S.
Serie CRC 1173 Preprint ; 2022/14
Projektinformation SFB 1173/2 (DFG, DFG KOORD, SFB 1173/2 2019)
Externe Relationen Siehe auch
Schlagwörter Phillips functional calculus, Strichartz estimates, Lipschitz coefficients
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page