KIT | KIT-Bibliothek | Impressum | Datenschutz

Oscillatory integral operators with homogeneous phase functions

Schippa, Robert

Abstract:

Oscillatory integral operators with 1-homogeneous phase functions satisfying a convexity condition are considered. For these we show the $L^p$–$L^p$-estimates for the Fourier extension operator of the cone due to Ou–Wang via polynomial partitioning. For this purpose, we combine the arguments of Ou–Wang with the analysis of Guth–Hickman–Iliopoulou, who previously showed sharp $L^p$–$L^p$-estimates for non-homogeneous phase functions with variable coefficients under a convexity assumption. The estimates are supplemented by examples exhibiting Kakeya compression. We apply the estimates to show new local smoothing estimates for wave equations on compact Riemannian manifolds $(M, g)$ with dim $M\ge3$.


Volltext §
DOI: 10.5445/IR/1000143386
Veröffentlicht am 03.03.2022
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Analysis (IANA)
Sonderforschungsbereich 1173 (SFB 1173)
Publikationstyp Forschungsbericht/Preprint
Publikationsmonat/-jahr 02.2022
Sprache Englisch
Identifikator ISSN: 2365-662X
KITopen-ID: 1000143386
Verlag Karlsruher Institut für Technologie (KIT)
Umfang 49 S.
Serie CRC 1173 Preprint ; 2022/15
Projektinformation SFB 1173/2 (DFG, DFG KOORD, SFB 1173/2 2019)
Externe Relationen Siehe auch
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page